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Ketones as a new synthon for quinoxaline synthesis
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Abstract—o-Phenylenediamines react with an array of ketones in PEG-400 at 60 �C under an atmosphere of air in the presence of
KOH to afford the corresponding quinoxalines in good yields.
� 2007 Elsevier Ltd. All rights reserved.
Many synthetic methods have been developed and doc-
umented for quinoxalines due to their intrinsic pharma-
cological and biological activities.1 Conventional
quinoxaline synthesis can be achieved by the reaction
of o-phenylenediamines with two-carbon synthons such
as a-dicarbonyls, a-halogenocarbonyls and a,b-diha-
lides.2 o-Nitrosoaminobenzenes and benzofuroxans are
also used as substitutes for o-phenylenediamines to form
quinoxalines. Besides such a conventional route, metal-
catalyzed reactions for quinoxaline skeletons have also
been attempted as alternative methods because of the
facility and efficiency of reaction and the wide availabil-
ity of two-carbon synthons. It is known that a-hydroxy
ketones are oxidatively cyclized with o-phenylenediam-
ines in the presence of transition metals such as Mn,
Pd, Ru and Cu to give quinoxalines.3–6 Epoxides are
also used as a two-carbon synthon in bismuth-catalyzed
oxidative cyclization with o-phenylenediamines to afford
quinoxalines.7 As a part of our ongoing studies on N-
heterocyclization,8–11 we also reported on the synthesis
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Scheme 1.
of quinoxalines via a ruthenium-catalyzed oxidative
cyclization of vicinal-diols with o-phenylenediamines in
the presence of a base and a sacrificial hydrogen accep-
tor.12 These circumstances led us to seek for a new two-
carbon synthon for quinoxaline synthesis. Herein, this
report describes a new synthetic approach for quinoxa-
lines from o-phenylenediamines and ketones as two-car-
bon synthons (Scheme 1).

The results of several attempted cyclization of o-phenyl-
enediamine (1a) with propiophenone (2a) are listed in
Table 1. Treatment of equimolar amounts of 1a and
2a in PEG-400 in the presence of KOH at 60 �C for
40 h afforded 2-methyl-3-phenylquinoxaline (3a) in
41% isolated yield (run 1).13 The molar ratio of [2a]/
[1a] affected the yield of 3a. In atom economy point of
view, the molar ratio of [2a]/[1a] = 2 is the choice of
preference for the effective formation of 3a (run 2).
The yield of 3a increases with prolonging the reaction
time up to 60 h (runs 2–4). When the reaction was car-
ried out under an atmosphere of argon, a slightly de-
creased yield of 3a was obtained (run 5). Higher
reaction temperature rather resulted in lower yield of
3a (run 6). Among the solvents examined under [2a]/
[1a] = 2, PEG-400 in terms of product 3a yield revealed
to be the solvent of choice (runs 2, 7–11). The molar ra-
tio of [KOH]/[1a] = 3 was required for the effective for-
mation of 3a, using equimolar amount of KOH relative
to 1a resulting in a lower yield of 3a (run 12). However,
the presence of KOH was essential for the effective for-
mation of 3a. When the reaction was carried out in the
absence of KOH, the cyclization did not occur at all
towards 3a (run 13).
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Table 1. Optimization of conditions for the reaction of 1a with 2aa

NH2
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Run [2a]/[1a] KOH (mmol) Solvents Temperature (�C) Time (h) Isolated yield (%)

1 1 3 PEG-400 60 40 41
2 2 3 PEG-400 60 40 60
3 2 3 PEG-400 60 20 33
4 2 3 PEG-400 60 60 72
5b 2 3 PEG-400 60 60 64
6 2 3 PEG-400 100 40 43
7 2 3 Toluene 60 40 38
8 2 3 Dioxane 60 40 45
9 2 3 DMSO 60 40 2

10 2 3 THF 60 40 54
11 2 3 1,2-Dimethoxyethane 60 40 56
12 2 1 PEG-400 60 40 51
13 2 — PEG-400 60 40 0

a Reaction conditions: 1a (1 mmol), solvent (2 mL).
b Under an atmosphere of argon.
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As to the reaction pathway, although it is not yet fully
understood, this, consistent with the product formed,
seems to proceed via an initial formation of ketimine 4
by the condensation between 1a and 2a, which in turn
triggers tautomerization to form enamine 5. KOH seems
to play a role in facilitating such a tautomerization. Sub-
sequent steps seem to be followed by intramolecular
hydroamination to form 1,2,3,4-tetrahydroquinoxaline
6 and dehydrogenation to give 3a (Scheme 2).

Having reaction conditions being established, o-phenyl-
enediamines 1 were subjected to react with various ke-
tones 2 in order to investigate the reaction scope and
several representative results are summarized in Table
2. The reaction of 1a with 1-arylpropan-1-ones (2b and
2c) having electron donating and withdrawing substitu-
ents on the aromatic ring also proceeds to give the cor-
responding 2-aryl-3-methylquinoxalines (3b and 3c).
Alkyl phenyl ketones (2d–g) were also cyclized with 1a
to give the corresponding 2-alkyl-3-phenylquinoxalines
(3d–g) in the range of 65–73% yields. The reaction
proceeds likewise with alkyl benzyl ketone 2h to produce
2-isopropyl-3-phenylquinoxaline (3h). However, the
reaction did not proceed satisfactorily with acetophe-
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none, 2-phenylquinoxaline being formed in only 20%
yield. In the reaction of 1a with 1-phenylbutan-2-one
(2i), 2-ethyl-3-phenylquinoxaline (3i) was obtained in
56% yield without the formation of expected regio-
isomer, 2-benzyl-3-methylquinoxaline. As shown in
Scheme 2, the preferential formation of 3h to 2-benzyl-
3-methylquinoxaline seems to be due to relative reso-
nance stability of intermediate enamine. Lower reaction
rate and yield were observed with non-activated dialkyl
ketones (2j and 2k). Here again, no regioisomeric qui-
noxaline was observed with 2j. Cyclic ketones such as
cycloheptanone (2l) and cyclooctanone (2m) were also
reacted with 1a to give 7,8,9,10-tetrahydro-6H-cyclo-
hepta[b]quinoxaline (3l) and 6,7,8,9,10,11-hexahydrocy-
cloocta[b]quinoxaline (3m) in 51% and 61% yields,
respectively. Similar treatment of 1b with alkyl(aryl) ke-
tones (2a–c and 2g) afforded the corresponding quinox-
alines (3n–q) in the range of 49–74% yields. The
cyclization of 1b with 2h resulted in a quantitative yield
of quinoxaline 3r.

General experimental procedure: To a 20 mL round-bot-
tomed flask were added o-phenylenediamine (1 mmol),
ketone (2 mmol), KOH (3 mmol) and PEG-400
(2 mL). The system was stirred at 60 �C for 60 h. The
reaction mixture was extracted with chloroform, washed
with H2O several times and dried over Na2SO4. Re-
moval of the solvent left a crude mixture, which was sep-
arated by thin layer chromatography (silica gel, ethyl
acetate–hexane mixture) to give quinoxaline.

In summary, we have shown that quinoxalines could be
synthesized by the reaction of o-phenylenediamines with
ketones in PEG-400 in the presence of KOH. The pres-
ent reaction is a straightforward methodology for the
synthesis of quinoxalines from readily available starting
ketones. Further study of synthetic application for N-
heterocycles via an intrinsic enamine intermediate of this
reaction is currently under investigation.



Table 2. Synthesis of quinoxalines 3 from o-phenylenediamines 1 and
ketones 2a

1 Ketones 2 Quinoxalines 3 Isolated
yield (%)

Ar
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Me

1a 2a Ar = Ph 3a Ar = Ph 72
2b Ar = 4-OMeC6H4 3b Ar = 4-OMeC6H4 59
2c Ar = 4-ClC6H4 3c Ar = 4-ClC6H4 54
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1a 2d R = Pr 3d R = Pr 73
2e R = hexyl 3e R = hexyl 65
2f R = phenethyl 3f R = phenethyl 68
2g R = Ph 3g R = Ph 67

O
Ph

N

N

Ph
1a 2h 3h 75

O
Ph

N

N

Ph

1a 2i 3i 56

O

N

N

1a 2j 3j 30

O

N

N

1a 2k 3k 31

O

N

N

1a 2l 3l 51

O

N

N

1a 2m 3m 61

N

N

Ar

Me

Me

1b 2a 3n Ar = Ph 54
2b 3o Ar = 4-OMeC6H4 74
2c 3p Ar = 4-ClC6H4 49

N

N

Ph

PhMe

Me

1b 2g 3q 71

N

N

Ph

Me

Me

1b 2h 3r 95

a Reaction conditions: 1 (1 mmol), 2 (2 mmol), KOH (3 mmol), PEG-
400 (2 mL), 60 �C, 60 h.
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